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Abstract

In this report, short cylindrical shells are studied

under pure bending. An edge kinematic constraint loading

method is adapted for use with the STAGSC computer code.

With it, short unstiffened cylindrical shells are studied

for prebuckling displacements and compared with axially

stressed cylinders. End rings are added to nc their in-

fluence. The bending is applied to short internally stiff-

ened (smeared stringer theory) cylinders, with the result-

ing buckling values and patterns contrasted against axial

loading. The L/R range of interest is from .698 to 1.361.

Symmetrical and unsymmetrical 12 inch cuts are added to the

stiffened cylinder to study the resulting effects from this

imperfection. The results indicate:

a. For short length (L/R < 10) cylinders, end loading

by pure bending causes structural deformation patterns

different than long cylinder bending deflections.

b. The imposed boundary effect for unstiffened cylin-

ders diminishes with L/R increase until L/R = 20 where there

is no noticeable deformation influence.

c. End ring stiffeners studied did not alter the basic

short cylinder deformation patterns.

d. Compressive zone buckling failure under bending can

be modeled through axial compression analysis.

ix



A STUDY OF SHORT CYLINDRICAL SHELLS WITH AND

WITHOUT CUTOUTS UNDER PURE BENDING

I. Introduction

Proloque

Anyone having bent a can or slender tube has wit-

nessed cylindrical shell insLability. More important mani-

festations include kinking of ocean floor piping, nuclear

plant fluid pipe failures, and the failure of aircraft

fuselages or spacecraft boosters. The aerospace design

engineer is faced with trying to optimize the strength to

weight characteristics of these flight structures. This

compels him to understand the problems of thin shell sta-

bility and methods for determin'ng design characteristics.

It was this sort of impetus that motivated Donnell (Ref 16)

to develop his simplified equations of equilibrium for a

cylindrical wall in 1933. The high speed computer has

greatly enhanced the ability to analyze and understand thin

shell structures. I will use one such computer code

(STAGSC) to analyze the effects of pure bending on short

cylinders.

The thesis topic arose from discussions with

Dr. Palazotto. A previous student, Norton Compton (Ref 15)

had problems in keeping the end plane from warping when he
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attempted to apply pure bending moments. My task became

one of finding a method for applying pure end rotation

while keeping the end plane undistorted and circular. Once

the method was perfected, I was to study its effects on

stiffened and unstiffened cylindrical shells with and with-

out cutouts. Through an associate, Dr. Palazotto received

a method devised by J6rgen Skogh and Frank Brogan (Ref 29),

which I adapted for STAGSC (Ref 5). This paper will cover

previous work in bending analyses, the Skogh routine, and

results of employing it.

Background Theory and

Literature Search

A shell structure is usually defined as a body

enclosed between two closely spaced curved surfaces.

Cylinders are a subset in that there is only one radius of

curvature. Shell theory is an attempt to use the assump-

tion of smallness in the thickness direction to relate the

three-dimensional problem of deformation of the body to

that of displacement components on a middle surface or

reference surface. The analysis therefore involves making

assumptions about the shells' dimensions. For thin

cylindrical shells the following assumptions given by Love

are standard (Ref 25):

1. The shell is thin. This means that the thick-

ness of the shell is small compared with the radius of

2



curvature R of the middle surface, so that the ratio is

small compared to unity.

2. The deflections of the shell are small, and the

strains in the direction of the normal are small enough to

be neglected. This allows us to refer the analysis to the

initial configuration of the shell.

3. The normal stresses acting on planes parallel

to the middle surface are negligible compared with other

stress components and may be neglected in the stress-strain

relations. This assumption will generally be valid except

in the vicinity of highly concentrated loads.

4. The components of the displacements are

linearly distributed across the thickness.

5. The shear strains which cause the distortions

of the normals to the middle surface can be neglected.

Which says that normals to the undeformed middle surface

remain normal to it after deformation.

Assumptions 2, 3 and 5 are the shell counterparts for the

Kirchhoff assumptions of thin plate theory (Ref 14). For

a complete listing of the assumptions for Kirchhoff's

theory of plates and Love's first approximation to the

theory of shells, see Gould (Ref 17). These assumptions

are applied to a portion of a shell surface, Fig 1, along

with the internal forces and moments, expressed as forces

and moments per unit distance (intensities) along the edge.

3



zI

R do

dx

x Mx8 x  No

Nx
Middle Surface

Figure 1. Cylindrical Shell Segment

On Fiq 1, the Nx and N8 are in plane normal intensities;
N and Nxare shear intensities;Q and Q8 are transverse

shearing force intensities; the M and M0 are bending moment

intensities; and the Mx0 and Mex are twisting moment inten-

sities. See Appendix A for their definitions along with

the constitutive equations and kinematic relations. Allow-

ing a slight deformed position, the forces are summed and

recombined with the constitutive and middle surface kine-

matic relations to get equilibrium eqswith dead load pres-

sure loading p:

RN + N 0
x'x xeO,0

RNx@ + N = 0 (i)x,x 8,0

DV W+ N - W, + N , + N W = p
R x x R X0 x0 R2 to

4



where Vww, 2 1,xxLW + wXXXX R 2 xxO eeeR e

Et
and D is the bending stiffness D =

12(l-V
2)

Equations (1) are coupled nonlinear partial differential

equations for quasi-shallow cylindrical shells. Linear

equations are obtained by deleting all quadratic and higher

order terms in u, v, and w since they are products of

already assumed small quantities. The resulting equations

are:

RNxx + Nxee = 0

RN +N 8  = 0 (2)
1

DV 4W + _ N = pR 0e

The difference between Eqs 2 and those for a flat plate is

that Eq 2c is not uncoupled from Eq 2a and 2b. This gives

us the important result that axial and/or circumferential

movement produces radial displacements.

Eq 1 can be derived through the use of the minimum

Potential Energy Criterion. A review of energy methods

and variational calculus can be found in Brush (Ref 14) and

Saada (Ref 25). The total potential energy V can be

denoted as the sum of the strain energy U of the cylindri-

cal shell and potential energy Q of the applied forces.

The condition for equilibrium is arrived at by taking the

first variation of the total potential energy 6V and setting

5



it equal to zero, while the criterion for stability is that,

in addition, the second variation 6 2V/2 must be positive

definite. For a cylindrical shell the strain energy U

can be seen as a combination of a membrane strain energy

U and bending strain energy Ub-

= RC +E2 + 2xc 2 dxd (3)

m RD2 xe dXd (4)-2

b RD ff{K + K 2 + 2vK + 2(1%)) } dxd8 (4)

b 2 x e Xe B (1v)K

Et
where C is the extensional stiffness C = (lv2)

And for the shell subjected to dead-load lateral pressure p,

the potential energy is given by

= -RffpwdxdO (5)

Setting the first variation 6V equal to zero leads again

to Eqs 1.

Before determining the buckling equations, a quick

overview of stability theory is appropriate. Instability is

a nonlinear phenomenon in which a small increase in load

causes a disproportionately large increase in deformation.

This load is called the critical load P cr The nonlinearity

can be caused by either material (plasticity) or geometric

nonlinearity. Only geometric nonlinearity is considered

in this report. Sobel (Ref 30) details how the loss of

stability can happen through either bifurcation buckling or

geometric collapse. Figure 2a represents bifurcation

6



buckling. The load displacement curve emanating from the

origin is intersected by another load displacement curve

that represents a different equilibrum configuration. The

point of intersection is called the bifurcation point, and

the load at that point is called the bifurcation load.

Figure 2b represents collapse. The load displacement is

nonlinear from the origin and reaches a relative maximum.

The load at this point is called the collapse load.

IBifurcation Collapse
Load Load

Stable - Stable
Unstable 12 --- Unstable

0 Bifurcation 0 0 Limit Point
Point

0

Lateral Displacement Lateral Displacement

Figure 2a. Bifurcation Figure 2b. Collapse

The adjacent-equilibrium path shown in Fig 2a is

sloping upward indicating a stable post buckling path.

This is not always so and in most cases does not happen.

Koiter (Ref 18) studied the post buckling equilibrium con-

figurations through the energy formulation of the loaded

structure. The potential energy expression used earlier

is of the general form

V = IA F(u,v,w,X)dA (6)

7



where u, v, and w are middle surface displacement components

and X is an applied load parameter.

Let the variables become

u+ U + U
0 1

V v + v (7)
a I

w w + w
0 1

where (u, v.1 w ) represents an equilibrium position on the

primary path, (u, v, w) form a nearby adjacent equilibrum

position corresponding to the same value of X, and (u , v,1

w ) is a small infinitisimal displacement. Then when the1

change in potential energy is written

V = 162 + 6 V + _ v ... (8)
2 6 24~ . 8

The first order term drops out since (u0 v0 ,w0 ) is an equi-

librium position. Application of the stationary potential

energy criterion to the expression AV leads to the equations

governing post buckling behavior. The cases shown in Fig 3

arise depending on the characteristics of the structure.

As is seen in Fig 3 the post buckling paths vary consider-

ably. The solid line secondary path represents perfect

structure adjacent equilibrium, whereas the dash dot line

denotes imperfection sensitivity. Notice that the imperfec-

tion sensitive lines are nonlinear from the origin and hence

more closely model collapse modes. In all cases, the imper-

fections lower the load at which the structure becomes

8



II I

Case I Case II Case III
Stable-Symmetric Unstable-Symmetric Asymmetric

(a) (b) (c)

Figure 3. Loa,- Displac, ment Curves For Perfect and

Imnerfection Sensitive Structures. From(3lU)

unstable. It is most critical in case II where the

imperfect structure will snap at the limit point.

The equilibrium equations are now transformed into

a linear coupled set representing the buckling mode. First,

the reference surface displacement components are replaced

by Eq 7, in Eq 1. Accordingly, the force intensities

become

N - N + ANx xo x

N - N o + AN (9)

Nx  -Nx0o+  ANxe

Where terms with o subscripts refer to the primary equili-

brium configuration, and ANx , AN., and ANxe correspond to

the change due to increment. When Eqs 7 and Eqs 9 are

substituted into eqs 1, all terms in uo, vo , w0 alone as

9



well as terms such as N fall out. Also, if the higherXO

order terms in u, v, w and Nx etc. are neglected due to

their small relative size, the remaining equations become

RNxl
xl,x x6I,0

RN N = 0 (10)RxsI,x 01,0

-+ - W(N o,xxx

D 1 +R 01x Lxxlx +

21]
+ I(Nxwl x + W o N 0 ) + R (No +wo N 0

The terms wo x and w0 ,6 represent prebuckling rotations

which add considerable difficulty to the solution of these

equations. Most early work (Refs 9; 15; 18) in this area

neglected these terms in their analyses. With the computer

available, these terms do not have to be neglected. How-

ever, a recent work by Brush (Ref 13) shows that at least

for uniform lateral pressure the effect is very small.

Figure 4 shows that for most thin cylinders the effect is

less than 10%.

Therefore, neglecting the prebuckling rotations and

substituting in the revised kinematic and constitutive

relations we get a coupled set of three linear equations in

the variables ul, V., and w I. The solution to which is

generally called the "buckling mode."

10



3C

L=cylinder length
R=radius

20 -t=thickness

R/t=2 0 05

13

0
S-4

W 
0

-13

0 0.2 0.4 0.6 0.8 1.0

L/R

Figure 4. Error Due to Neglect of
Prebucklina-Rotation terms
in Stability Equations for
Uniform Lateral Pressure.

From (13)

R2 + 1-v l1-V
-Ru + -\)u +-12RV + \Rw = 0l,xx 2 1,88 2 l,xe l,x

1+V RU +21-V R2 '  + V + Wl, = 0
2 1 ,X8 2 lxx 1,88 0

DNVww +2 C u + (11)

- N ,xx + x0oW1,x0+ R2 Neowl,ee)

These are the Donnell stability equations in coupled form

(Ref 16). They can be partially uncoupled to get the form

which are homogeneous in wI. Using the partial derivative

11i



notation rather than the indicial notation and dropping

the subscript, we get:

V4uU w + 1 a3 w
R ax, R3  602  x

V 4 +v 3w + (12)
R2  eDx 2  R4 3e3

D Iw lV 2 C i Ww +2 N 2 w + -L N 1Lw) =0
D7ew + 1_~ _ v4 (N w+2Nw+ N W~R2  3X X 2  RXe x R2  ea02

It is Batdorf's (Ref 9) modification of these equations which

Seide and Weingarten (Ref 26) used to study an isotropic

cylinder under pure bending loads. Until the publication of

(Ref 26) the prevailing method for figuring the buckling

stress was by stating that ab = 1.3a c where ob is the maxi-

mum bending stress and a c the critical axial stress for a

corresponding axial compressive buckling problem. As Seide

and Weingarten point out, the value 1.3 arose from Flugge's

analysis where he expressed ab in terms of a dimensionless

wavelength parameter X = m7R/L; m denoting the number of

axial half waves in the assumed sinusoidal buckle pattern.

He found ab by minimizing ob with respect to X. In doing

so he chose 1 for the value of X to illustrate the technique,

which led to ab = 1.3a c . Thus the value of 1.3 became part

of engineering common practice. Seide and Weingarten used

the Galerkin method to derive the stability criterion. They

assumed the radial deflection

12



Co

w = sin m_x Z a cos n (13)
L nn=0

plugged it back into the modified Donnell equation and

found the eigenvalue by matrix iteration of the determinant

of coefficients for a Their analysis showed that for alln

practical purposes eb G c for thin cylinders. Lakshmikan-

tham (Ref 18) also used the Galerkin approach. He approxi-

mated the buckle pattern by

w = A sin (x/X*) cos NO for 101 < 7T/2N

= 0 elsewhere on the circumference (14)

which denotes a single lobe of variable width dependent on

the value of N. He showed that, with the single dimple as

the lowest energy state ab ac as above. This method also

gave an upper bound ab/cc = /2 when there exists many

dimples along the top half of the cylinder. They were also

able to establish that generally, the axial wavelength of

pure bending is less than corresponding compressive case

X* < X with the equality corresponding to the axisymmetric
X - X

case. Thus the wavelength as well as the buckle pattern

changes in going from the axial compression to bending

problem. The wavelength is given by

X z X = 2iT(Rt) ] for (R/t large) (15)
b c (12 (1-V 2 ) 4 -

= 3.45 (Rt) when = .3

13



It can be seen that this gives a wavelength quite small in

comparison with the length of the shell.

= 3.45 () ( ) < 1 (R/t large) (16)

More recent studies have also used the Galerkin approach.

Reedy (Refs 22; 23) has used nondimensionalized parameters

in the Batdorf modified Donnell equation. 
He uses e

for the circumferential modal form which allows him to

match, for sufficiently small values ofnl= Re/L, an axial

distribution of load which approximates cos 0.

The previous analyses have concentrated on thin,

short to moderate length shells. As the cylindrical shell

becomes longer, or for moderate length cylinders with ends

that are not held circular, nonlinear prebuckling effects

must be considered. Brazier (Ref 11) first studied this

effect in 1927 (Ref Fig 5). He noticed that as an

increasing moment is applied, the cross-section flattens

and its moment of inertia decreases causing ovalization.

Due to the curvature, the axial stress in an arbi-

trary axial fiber will have a component (resultant) directed

towards the neutral axias of bending. This happens on both

the tension and compression sides. Sobel (Ref 31) lists

the following consequences as a result of the oval shape.

1. A redistribution of stress occurs.

2. The circumferential radius of curvature

increases.

14
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Boundary conditions usually restrict the prebuckling defor-

mations so that cross-sections at the shell edges remain

circular. As a result, the flattening occurs at a higher

stress than predicted by Brazier. However, as the L/R

ratio increases, the influence of the flattening modes

becomes dominant and the critical stresses approache that

predicted by Brazier. Figure 6 (Refs 7; 31) details the

relationship between the applied moment and the cross-

sectional flattening.

. .605
I '/z-6 R/t 100

10
.1 .4

0 .02 .06 .1 .14 .18

1" W

i- 'irc: 6. Load &t}f-Iection Curves From P')

Akselr d (Ref 1) studied the Brazier effect to determine a

relevant range over which the effect applies. An asymptotic

method was used for the solution of the prebuckling problem

while an equivalent cylinder approach was used to obtain

the critical stress. He reported that ab varies from

.6Et/R for short cylinders to

17



ab = .295 Et/R (R/t large)

(21)
1/2 aCrclassical

for cylinders with

L/R > 2.5 (R/t) (22)

His results are plotted against discrete points found by

(Ref 7) in Fig 7.

.6 _h r t.
Aksei ad

*E2 Bazier&~ - -

C2 -: O0."a

0 , _ _ _ _ _ _ _ _ _ _

5 10 15 20 25

L/ R

FiP;ure 7. Critical Load Factors for
Cylinders Under Ilknding
r.'ro.f (71

As was pointed out earlier, assuming the same

boundary conditions are used, test results generally show

a lower critical bending stress than theoretical, mostly

due to imperfections within the testing specimens. And

18
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since the cylinder under bending has less of its surface

at the peak compression zone, when compared to axial com-

pression, it is reasonable to expect that the maximum bend-

ing stress is higher than the critical axial stress. Sobel

(Ref 31) outlines a method using a knock-down factor, which

is an empirical reduction factor, that accounts for the dis-

crepancy between classical predictions and experimental

results. It is defined as

a
oCrexperimental (23)
crclassical

and applies to both bending and compression in the same

fashion, respectively, but with different numerical values.

If the ratio of bending to axial critical stress is taken,

the following result is given

a b _1-.731(-e
5 1

b iwhere 4 = 1 R/t] (24)
c 1-.901(l-e

- 0)

The picture as to the buckling characteristics, changes

greatly when internal and/or external stiffeners are added.

Stiffening and Cutouts

Stringers and rings are added to a structure to give

rigidity and reduce imperfection sensitivity. If the

stringers are closely spaced around the surface, the

stiffened shell will fail through general instability. A

19



smeared stiffener theory can be used to analyze the total

structure. Its assumptions (Refs 21; 27) are:

a. The stiffeners are distributed over the whole

surface of the shell.

b. The normal strains vary linearly in the

stiffener as well as in the shell. The normal strains in

the stiffener and in the shell are equal at their point of

contact.

c. The shear membrane force N is carriedxy

entirely by the shell.

d. The torsional rigidity of the stiffener cross-

section is added to the shell.

However, if the stiffeners are spaced relatively far apart

the use of discrete theory is more appropriate. I will use

the smeared theory option of STAGSC for my work. Singer

et al. (Ref 28) did a parametric study via a Galerkin sub-

stitution in the Donnell stability equations. The results

showed that stiffener eccentricity has a large effect on

axially compressed cylinders. They classified the effects

as

a. Primary effect-outside stringers increase the

actual bending stiffness in the longitudinal direction

more than inside stringers.

b. Secondary effect-inside stringers increase the

actual extensional stiffness in the circumferential direc-

tion more than the outside stringers.
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Figure 8 shows the primary effects whereas Figure 9 denotes

the secondary effects. The eccentricity will either help

or hinder a restoring moment when an initial displacement

occurs in the radial direction. When the primary resistance

to buckling is in the axial direction the restoring moment,

Mx, remains constant regardless of the stiffener position.

An additional moment is generated by the stiffeners with

their resultant compressive force Nx acting through the
0

distance z (the eccentricity--also given as e1 on Fig 16).

Thus, the actual moment produced by the shell-stiffener com-

bination is different than the generated shell moment. As

for the secondary effects, they come about due to an addi-

tional membrane force N produced in the hoop direction

through Poisson's ratio acting on the additional axial
in

strain caused by M i The radial component of this N

will again assist or hinder buckling depending on stiffener

location.

The preceding effects assume the radial displace-

ments are either barrel shaped or continuously concave.

Nelson (Ref 21) pointed out that stringer stiffened pre-

buckling axial wave patterns vary from concave to convex

and hence should appear in the prebuckling analysis.

STAGSC includes these effects in its linear prebuckling

analysis.

Another aspect is where the load is applied in the

shell-stiffener combination. Figure 10 from (Ref 6) depicts
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the results of loading through the neutral surface versus

loading at the centroid of the stiffeners.

C Loaded at Centroi 1.2
.22 Loaded at Neutral

rfac
C .20 LUI~C) -U 0 .
E . 1 8

u .16 .8 4

.14

.0 \
.~ 12.6 u

. 08 \ .4

.06 -
U Uv.04 - U0. - 2 =

.0 4 .2

-02

0 10 20 30 40

Arc Lenqth From Midlenqth
in.

Figure 10. Prebucklina and Bucklinq
Displacements of an Internally
Stiffened Simply Supported Cyl.

From (6)

It is apparent from the Fig 10 that the loading

placement is very important for the prebuckling displace-

ments but doesn't have too much of an effect on the buckling

mode. Boundary conditions have more of an impact there.

Lakshmikantham et al. (Ref 19) studied the bending

of orthotropic shells via the Galerkin procedure, using the

same assumed deflection function as for the isotropic

cylinder. They found ab ac as before where
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a = 1 + 12(l-v 2 )Z 2 /r4  0 < Z < Z*

= .702 Z(l-v 2 )i/2 Z* < Z (25)

where Z* = n2/(12(1_V2) (26)

and Z = L 2-(lV2) is the Batdorf parameter. (27)

Referring to (Refs 27; 28) further comments are possible.

Singer noticed that for very small values of Z, that is

less than 15, inside stiffened shells have analytical

buckling loads greater than outside stiffened shells. Also,

a decrease in eccentricity effect occurs for long shells,

Z greater than 1000, where the cylinders act unstiffened.

Also, contrasted against Z in the study were the stiffener

parameters. It was noted that as the stiffener parameters

increased, there was a corresponding increase in the

eccentric stiffening except for very long shells. The

results showed that the eccentricity affect behavior depends

very heavily on the geometry of the shell; whereas, the

stiffener geometry influences the magnitude of the eccen-

tricity effect.

Along with the stiffener versus Z studies, the

smeared stiffener theory was better defined. It was found

that the nondimensional area ratio A1 /b1 t from Fig 16 is

the important geometric parameter which determines whether

smeared theory is suitable. Singer (Ref 27) concluded that
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with a stiffener area ratio greater than 0.2 stringer

stiffened shells could be analyzed closely with smeared

theory.

Much study has also been directed towards the

effects of different boundary conditions. Nelson's (Ref 21)

thesis was devoted to a parameter study using the standard

delineation of boundary constraints:

SSI W=0 W, =0 Nx=0 N =0xx xxy

SS2 W=O W, xx u=0 N xy=0

SS3 W=0 W, 0 Nx=0 v =0
xxx

SS4 W=0 W, ,x0 u =0 v =0

(26)

CCI W=0 W,x =0 N=0 Nx=0

CC2 W=0 W,x~ =0 u=0 Nxy=0

CC3 W=0 W, x =0 Nx=0 V =0

CC4 W=0 W x =0 u = 0 v =0

Some of his results were

a. For all the simply supported and clamped

cylinders with and without cutouts, the u=0 axial restraint

is the most important factor in buckling of axially com-

pressed cylinders. For small values of L/R, the v=0 con-

dition gains importance in simply supported stiffened

cylinders.

b. For simply supported cylinders, with and with-

out cutouts, internally stiffened cylinders are more sensi-

tive to inplane boundary conditions.
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c. The boundary conditions actually realized in

experimental tests can be determined by correlating the

experimental loads to the theoretical values for various

boundary conditions. An agreement between results would

then indicate the boundary conditions actually experienced

in experimental tests.

Noting the latter conclusion, the differences between experi-

mental tests and analytical studies arise from three areas:

initial imperfections, prebuckling rotation, and boundary

conditions. With judicious forethought the last two can

be modeled closely whereas the first requires empirical

studies.

Theoretical and experimental studies of cutout

effects under bending are very sparse, if any. What studies

have been accomplished have dealt mainly with cutout effects

for axially compressed cylinders. Brogan and Almroth (Ref

12) studied an unstifl'ned shell with two symmetrical cut-

outs. Their theory indicated a collapse load, 30% above the

experimental load of the shell with reinforced cutouts,

was only slightly below the critical load for a cylinder

without cutouts. When they compared their results against

Tennyson's cylinders with circular holes, it was noticed

that the rectangular holes have less of an effect. However,

Brush and Almroth (Ref 14) have lately shown that the effect

is approximately the same. Palazotto (Ref 22) carried out

a much more thorough investigation of cutouts using the
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S"AGSA computer program. He showed that discrete and

smeared theories give close results for a nodal arrangement

which includes a circumferential mesh line at and between

stringers and axial mesh spacing equal to the stringer

spacing. This arrangement produced results within 3% of

those with a more detailed mesh arrangement. Further, a

mesh arrangement that insures at least five nodes per half

sine wave was shown to be sufficient. Nelson (Ref 21)

further studied the effects of sneared stringer reinforce-

ment of the cutouts. He found that cutouts affected the

externally stiffened shells to a greater extent than

internally stiffened shells and this effect diminished as

the L/R ratio increased. Also, he found that the influence

of cutouts on the critical loads of stringer stiffened

cylinders is analogous to the effects that initial geometric

imperfections have on theoretical loads for "perfect"

cylinders.

This introduction, although not complete as to all

the studies which have been completed in this area, should

serve as an overview of the subject.

General Procedure

The Skogh-Brogan bending moment routine (Ref 29)

is combined with the STAGSC (Ref 5) computer code to analyze

the effects on cylindrical cylinders. The L/R ratio is kept

very short to minimize the Brazier effect. Using the linear

bifurcation branch, a rotation is applied to cylinders

28



without stiffening. The impetus is to study the deflection

buckling data. The cylinder L/R is then increased up to 20

to 1 to see how the bending boundary deflections are changed.

Then, end rings are added to the shell to see how the near

bending boundary deflections are effected. The last half

of the study has strinqers added to the cylinder for

analysis, with and without 12" cutouts. The STAGSC smeared

stiffener theory is used for this analysis. A parameter

study is accomplished with the L/R ratio changing from

.698 to 1.361.

r
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II. STAGS Procedures

STAGSC Theoiy

Refcronctr.i 2, 3, 4, 5, 6 , and 13 contain to varyinq

deres the basis oi which title STAGSC code i.s bui it. I

recoummend (Refs, 3; 4) as a primer before omployi nq the

users manual (Ref 5), since the proposed theory section for

the STAGSC manual was never pub 1 ished. Al so, a newer ver-

s tion STAGSC-1 is now out: in the f.iold whi.ch mainly uses a

finite element approach. Therefore, it- will probably be

harder in the future to qet help with the STA(1SC version.

One advant:aqe that the C-1 version should have, al.thouqh it:

is not availablo, yet, is pott-proces.sillq qraphlics paickaqo.

For any structural code a picture representation is very

much needed to qtet a q rasp oil what. the s irface is doinq.

Without it, the t ine devoted to plottinq point s makes that

part icular codo less worthwhilo. I will outline the basics

of the !rA(;SC fini.te dif ferene proco:.s in findimn the

bucklinq valluos,, then indicato the major dit-, IIrenct's between

STAGS A and C vsions for finite diffor, etco analy sis-, andl

mont ion some of the facets involved ill its soa ored thoory.

Structural behavior in, qo'vorned by the ecquation

Mii 4 D(uI) 1 1(u) K (u) F (27)
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where u is a vector of displacement components, M is the

mass matrix, D and B include forces that are functions of

deformation velocity and structural deformation respec-

tively, K is the generally nonlinear stiffness operator, and

F a vector of external forces. If the loads vary slowly

all time derivatives can be neglected. Figure 11 comes from

(Ref 4). It delineates the solution avenues available for

the different applicable terms of Eq 27. Assuming the

external forces vary very slowly and the load is independent

of deformation, then STAGSC uses a potential energy method

like Eq 6 to develop the applicable equations. A surface

mesh is introduced and derivatives of the displacement com-

ponents are expressed, using a truncated Taylor series

expansion, in terms of the displacements at the mesh points

by different approximations. Brush (Ref 14) gives a good

introduction to the subject and solves an example column

buckling problem. The derivative approximations are substi-

tuted into the strain energy equations. For stability, it

was related earlier that the second variation of V is set

equal to zero. Vanishing of the first variation of V leads

to the equation

LX = F (28)

where L is the stiffness operator that relates the finite

nodal displacement vector X to the external forces. For

the bifurcation problem if another displacement vector Y in

the neighborhood of X satisfies the equation, then
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LY = F (29)

And since there can be multiple solutions to Eq 28, a neces-

sary condition for bifurcation is that L'x be a singular

matrix where L denotes the derivative of the stiffness

operator. This leads to

det (Lx) = 0 (30)

It is then assumed that X may be written as

X = AXL  (31)

where XL is a linear solution for the vector FL; this leads

to Eq 30 becoming

det (L'XxL) =0 (32)

This is equivalent to an algebraic eigenvalue problem. Its

solution for X gives the critical load as a multiple of the

linear force vector FL

FCR = XFL  (33)

In this discussion, it was mentioned that a certain differ-

ence scheme is used to evaluate the derivatives. STAGSA

was based on a half station scheme. See Fig 12 from (Ref

3). This scheme has a weakness in its inefficiency for

nonlinear or stability analysis. It also has the disadvan-

tage that in-plane displacements must be defined at ficti-

tious points outside the shell boundaries. The STAGSC
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Fiqure 12. STAGSA and STAGSC Finite Difference Schemes
From (3)
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version uses the whole station scheme. The point in ques-

tion is surrounded by the total integration area broken

down into 4 smaller regions. The corner of each smaller

area has defined the requisite quantities, including the

rotations. This method allows better convergence. It

has been postulated in (Ref 3) that the finite difference

approach converges toward the correct solution if:

1. The local truncation error vanishes with the

gridsize.

2. For small values of nodal separation distance,

the solution varies continuously with the input data loads.

It was brought out in the background section that

Singer (Ref 27) gave several conditions for using the

smeared stiffener analysis. Since, for my work the stiff-

ener area ratio is .9333 > .2 recommended by Singer, the

smeared theory is applicable. Brush (Ref 14),

Lakshmikantham (Ref 19), and Singer (Ref 28) outline how

smeared theory is incorporated into the equilibrium equa-

tion. It is handled through the generalized constitutive

equations where the coupling effects are added to or sub-

tracted from the existing stiffness parameters. As an

example, the primary axial compression effect of a smeared

stiffener is added to the membrane extensional stiffness

parameter C expression. It has the form

EA
C C + s (34)new old ds

where As ds are the area of and distance between stringers.
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The STAGSC (Ref 5) code lets the user detail the

shell wall properties and dimensions, either directly

through regular data cards or by a user written subroutine

Wall. The program further handles the addition of smeared

or discrete stiffeners along the surface, and the mesh grid

size can be varied through specification in the discretiza-

tion section. Since my analysis includes nonsymmetric

cutouts, the regular data cards were unable to handle the

specifications, and I had to use the user defined subroutine

Wall to input my data. Appendix B contains two listings of

the subroutine Wall. The first listing does not include

cutout data whereas the second listing does. Although for

the case of no cutouts (listing 1) the use of the Wall sub-

routine was not needed, I decided to use it for uniformity

so that the cutout results could be compared directly. In

both cases smeared theory was incorporated within the Wall

subroutine. The mesh dimensions, surface parameters, stiff-

ener configuration, and cutout relationships will be out-

lined in the modeling section of this report.

The Skogh-Brogan Routine

To apply pure bending moments, in previous work done

with STAGS (Refs 5; 15; 32), an end line load N was varied
x

around the edge uniformly with the cosine. (See Fig 13.)

N = -N cos e (35)
x
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Figure 13. Applied Bending Moment Through Uniformly
Varying Axial Loading

where N is the amplitude of the load and 6 is the circum-

ferential coordinate. The generated bending moment is

therefore

M = N7R 2  (36)

This method did impart the desired moment numerical values;

however, it would also lead to some warping of the end plane

resulting in a load that was not pure planer bending, and

in some cases a net axial force also developed. End rings

were used to try and counteract the warping tendency.

Mr. J6rgen Skogh and Frank Brogan (Ref 29) working

at Lockheed's Palo Alto Research Laboratory approached the

problem from a different viewpoint. They set out to enforce

a planer end rotation and accept the applied moment value

which resulted. They were able to accomplish this through

the use of constraint equations which required that any
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point on the end plane meet certain boundary kinematic

restraint relationships. Thus free end rotation became

the independent variable (see Fig 14). The free end of

the cylinder is shown displaced through an angle 0 which is

assumed to be small so that cos 0 z 1. The equations which

they used to keep the end plane circular are

v sin S - w cos e =0 (37)

-v + v cos 8 + w sin e = 0 (38)

Eqs 37 and 38 keep the triangle formed by v, w, and v

(Fig 14) in equilibrium. That is why the angle should be

kept small--to keep the length v0 linear in Eq 38. The

requirement that this circular end remain planer under rota-

tion is fulfilled by

u0 = (u90 -uO) sin e - u = 0 (39)

This says that for any angle 6 (position around the circle)

the vertical distance u is a function of the difference

u - u0 as defined in Fig 14. By changing that difference,

the distance u varieschanges for a given uo and e. In

effect, u90 - uo is a measure of the slope which has changed,

meaning the angle of rotation has changed.

Skogh and Brogan's next ingenious step was to input

this difference as a displacement on a "dummy" branch. The

term dummy is used in the respect that this second branch

is only used as a method for inputing data and has no other
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relevance. STAGSC has the ability to match boundaries

along many connecting branches. In this case the boundary

is not connected. However, the second-branch is used to

input the desired displacement. Skogh reads in the desired

displacement u3 via load data cards for the second branch.

He then substitutes

u90 - uo = u3 (40)

into Eq 30; and along with the other two constraint Eqs 37,

38 forms the subroutine UCONST. UCONST allows the STAGS

user to provide kinematic constraints in the displacement

unknowns at internal and boundary points. The general con-

straint relation is of the form

N
E CiV 0 (41)

i

where Ci are constants and Vi are the displacement com-

ponents. What happens internally is that when the equa-

tions are being set up for the individual mesh points, at

those points where UCONST is applicable Eq 41 has to be

solved for also. The displacements are normally not fixed

but rather have to meet certain kinematic relationships with

surrounding points while the entire structure satisfies com-

patibility and equilibrium. This is the difference between

using UCONST vs input boundary constraint cards, which form

fixed positions. The dummy branch is used to internally

impart the desired rotation. Therefore, by specifying the
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top row as the place of interest in UCONST, the desired con-

straint equations are inforced with u90 - u0 = u3 . The

UCONST subroutine is listed in Appendix B.

A few points about the actual operation of the

method.

1. The second dummy branch can be of any type, so

the easier to model the better. I chose a 1 x 1 inch plate.

2. The specified displacement on this branch is in

the x direction. Changing the sign on the input reverses

the slope in UCONST and hence the applied rotation.

3. When trying to run a bifurcation analysis of

the primary branch, STAGS will automatically run a bifurca-

tion analysis of all branches and stop when the first con-

vergence criteria is met for any branch; not all branches.

Hence, to make sure that the bifurcation analysis is car-

ried out on the branch of interest, the other branches

should have their bifurcation analysis suppressed. This is

accomplished by setting the variable LlN=l on the Il card

for all the nondesired branches. See Appendix BI for an

input card listing and the user's manual (Ref 5) for further

guidance.

4. UCONST requires a do loop to set its way through

all the mesh points. When the nodal size is changed in the

circumferential mesh direction: the dimension, data, do

loop, singularity check, and IY cards have to be updated

in the UCONST subroutine as well as the number of constraint

relations variable NCONST on the Bi card.
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III. Modeling

Shell Model

Figure 15 denotes the pure bending rotation conven-

tions. The -901 fibres are in a tension field whereas the

+90* fibres are in a compression field. The radius R is

57.2958 inches. This facilitates measurements, since one

inch on the circumference equates to one degree. The cut-

outs are dashed indicating that they are not always there

in my analyses. When they are, 2a = 12 inches.

, 900

Is
V

'u 2a

t L
_900

Figure 15. Pure Bending Rotation

Figure 16 is another view of the cylindrical shell.

In addition, it has the stringer data drawn and tabulated.

Palazotto (Ref 22) demonstrated nonlinearities due to cut-

outs in stiffened shells were small even for a cutout size

of 2a equal to .3L. To keep w .hin that finding Nelson

(Ref 21) used smaller cutouts when he studied shorter
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cylinders. Since the major part of my work will be with an

L/R : 1 range, I will also use the smaller cutouts.

The strinqers placement followed that of Palazotto

and Nelson. The three inch on center spacing with A =.28

is well. within the realm of smeared stiffener theory.

A siqnificant effect of studyinq bending problems

is that the moment takes away the third plane of symmetry

due to loadinq asymmetry. It is not axisymetric. So a

quarter of the shell has to be analyzed each run. This

doubles the nodal requirements for the same "fineness" of

spacing which modelinq one eighth of the cylinder allows

for axial compression analysis. However, I am therefore

able to study asymmetrical cutouts (one rather than two)

without chanqtinq the modelinq strategy. The boundary con-

ditions are defined in Fiq 17. Conditions of symmetry are

imposed on boundaries 2, 3 and 4 throu(Ihout the analysis.

The simple suDport boundary conditions, Eq., 26, presented

earlier are imposed on the shell ends actincl under axial com-

pression alonq with the free condition for bendinq analysis.

For axial compression runs, both line loads and dis place-

ments were imposed on the shell ends. For bendinq analysis,

the dummy branch induced rotation is always used.

When buildinq some runs for comparison with other

published results, we noticed what has turned out to be an

internal computational error in the STAGSC proqram. Fiqure

1.8 shows STAGS results for axial compression runs under dis-

placement and force loading contrasted aqainst Nelson's
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Figure 17. Boundary Conditions for the Shell model

45



0

7..

X OA = Present Analysis

6.. 0 = Nelson's Results

0 L/R = 1.047

a/R = .1047

-45.

Ua

4.

3.
SSl/SS3 SS1/SS4 ss1/ss3 SSl/SS4

Cutouts No Cutouts

Figure 18. Comparison of Axial Compressive
Failure Loads under Force (SS4)
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results. Data for stringer stiffened cylindrical shells

with and without cutouts are examined. All Nelson's runs

were made with displacement loading while the boundary

conditions varied. The comparative results for SS4 condi-

tions are reasonably close. It is when SS3 conditions are

compared that a large disparage exists: around 450,000 for

Nelson's vs 800,000 for present work. However, when force

loading is introduced, A value for the SS3 cutout run, the

results fall within 1% of each other. This has led to the

conclusion that when the displacement loading is used with

the STAGSC bifurcation option the stiffness matrix formed

for the prebuckling boundary conditions is not decoupled

from the buckling boundary conditions. When force loading

is used this does not happen since a specific u has not been

specified. When the force loading runs are made with SS4

boundary conditions, the same results are obtained as with

the SS3 displacement combination. The first clue to the

reason for these results came from the eigenvector printout

sheet. For the displacement runs with SS3 conditions,

the top row u values were zero which they shouldn't have

been. This did not show up when force loading was used.

Mr. J6rgen Skogh, Lockheed's STAGSC consultant and monitor,

has been contacted about these findings.

This development has caused us to compare the bend-

ing moment results against the force SS4 combination axial

compression results. Although the top row, boundary one

condition1 is set as free for the bending runs, we feel that
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by setting in a definite rotation angle, the same thing

is happening with the stiffness matrix. Results have shown

this to be the case. Future work in this area with STAGSC

should center around resolving this internal mathematical

programming deficiency.

Finite Difference Mesh Arrangements

The grid systems developed for shell models with and

without cutouts are illustrated in Appendix C. Since

smeared theory is used in this study, a mesh line should be

placed under each stringer in the circumferential direction.

This necessitates a minimum of 61 nodes in the circumferen-

tial direction. Convergence studies were made with the

results confirming the need for this arrangement in the

compressive zone. However, there seems to be room for

economy in the tension zone. A comparative bending run

(Fig 19) with half the number of mesh lines, that is 6 inches

apart, on the tension side was made with the same spacing as

before on the compressive side. The buckling loads computed

out to be the same but the eigenvectors were slightly dif-

ferent. More importantly, this was done on an unstiffened

cylinder. Future studies will have to determine whether

economies can be gained using this method. For this study,

the mesh arrangement has remained symmetric about the middle

column. Another point should be made here. Previous

studies using STAGSA (Refs 15, 21, 22, 32) have used as a

rule of thumb,5 nodes per half sine wave in the eigen

48



analysis as a good measure for convergence. As was brought

out earlier, STAGSA used a half station difference scheme

whereas STAGSC uses a whole station method. Almroth

(Ref 3) did converge comparisons between the two programs

showing STAGSC to be much quicker and accurate. In fact,

for similar accuracy we can use almost twice as large

(sparser) grid spacing. This indicates that the smaller

node count per half sine wave is allowable. However, you

will want to be able to model the sinusoidal behavior

accurately.

Since this analysis is concerned with the displace-

ment effects of applying a pure rotation to the end of

cylinder, an axial mesh spacing of 1" near the top boundary

is used for all runs. The larger pertinent shape changes

are seen to take place within the top 5 or 6 inches as was

also indicated by Nelson (Ref 21). Stiffened cylinders

generally buckle with one half sine wave in the axial direc-

tion. So spacing is determined more by economy and the

desire to keep the mesh as square as possible. The 3"

axial mesh spacing beneath the top 5 or 6 rows is entirely

adequate. Unstiffened cylinders display more waves in the

axial direction as discussed under background. The 3"

axial spacing gives 2 nodes per half sine wave axially

which I believe is sufficient for STAGSC analysis if the

circumferential mesh spacing is "fine" (see Fig 19).

For the cutout region Palazotto (Ref 22) and Nelson

(Ref 21) have shown that a mesh spacing of 1.5" extending
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15" from the center of the cutout represent an optimum

refinement as far as computer time vs accuracy is concerned.

I will use this spacing strategy, as it also gives an addi-

tional mesh line between stringers circumferentially.

For the compressive analyses, I have used a com-

bination of 1/8 shell and 1/4 shell models. The axial

dimensions remain the same as discussed earlier. The cir-

cumferential dimensions mainly vary in the total length of

the shell modeled; not the spacing between the node points.

That is, for unstiffened axial compressio, I ran runs with

15 by 31 spacing over 900 circumferentially about 15 by 61

spacing over 180 ° circumferentially. The total number of

node points doubled but the spacing remained the same between

them. This was done in a study of boundary condition effects.

For the stiffened shells without cutouts, I kept the circum-

ferential spacing the same as for the bending analysis: 61

columns over 1800. For the cutout analysis, I used 1/8

shell modeling as did Nelson (Ref 21).
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IV. Results

Unstiffened Analyses

Short shells were originally chosen for our model

analysis in order to stay away from the Brazier non linear

effects. Also, previous work had been done (21, 22) on

stiffened short cylinders with cutouts under axial com-

pression against which comparisons could be made. Un-

stiffened cylinders were first examined to give us some ex-

perience with STAGSC.

Figure 19 is a plot of stress intensities for the max-

imum compressive zone at buckling for different mesh arrange-

ments. The reasons for these grid dimensions were given in

the modeling section. Models numbered 2, 3, 4, 6 and 7,

shown in Appendix C, were used for these convergence tests.

For axial compression analysis, the 15 x 31 mesh over 1800

is too sparse. The buckling values obtained with it were

36% of classical. Keeping the axial mesh the same and

halving the circumferential spacing gives results within 78%

of classical. Again halving the circumferential spacing,

that is doubling the node points in that direction to 121,

the answer comes to within 95% of classical values. However,

the total node point count of 1815 is very costly to solve.

It was decided that the characteristics we were looking for

in the unstiffened cylinders could be modeled adequately by

the intermediate 15 by 61 mesh arrangements. Also, as is

seen later on, for stiffened shells (Fig 28) this same grid

spac.ng gives very good results.
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Figure 19 shows the circumferential and axial node

point counts per half sine wave for the respective mesh

arrangements. As the circumferential spacing became "finer"

(more mesh lines per direction) the node point count rose

accordingly. For 121 mesh lines we get 6 node points per

sine wave. It is interesting that for a given axial spacing

the convergence is shown to be a function of the circumfer-

ential spacing. This means that the axial spacing has to be

at least a certain minimum to model the cylinder adequately.

There has to be enough grid points to let the equations

model the shells stiffness correctly. However, it seems

that a lack of mesh lines in one direction can be compen-

sated for, up to a point, by increasing the lines in the

other direction. The best practice is to keep the grid

sizing as square as possible with as fine a mesh spacing

as is economically feasible.

Also, mesh spacing strategy usually starts with a large

grid spacing, then decreases the spacing around regions of

interest. This method was used in this thesis, by having 1

grid line per inch near the top boundary where the loading

is applied, and 1 inch spacing around the cutouts. However,

this was done to study the deflections and stresses in these

regions, not to get a better buckling convergence. As was

mentioned earlier, for bending analyses, only the side of

the cylinder under the compressive zone is of buckling in-

terest. Figure 19 shows that a mesh arrangement (model 6)

with half the mesh lines in the tension zone, can give the
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same results for bending analyses as symmetrical arrange-

ments. This was only tested for unstiffened cylir lers;

further studies will have to investigate this mesh strategy

for stiffened cylinders where common usage says there should

be at least one grid line under each stiffener. For all

the axial compression vs end rotation loading analyses in

this thesis, the circumferential grid spacing was symmetri-

cal about the middle column.

The major finding of this thesis can be seen in Figs

20, 25, 26 and 27. Looking first at unstiffened short cyl-

inders (Fig 20) under pure bending, via kinematic end ro-

tation constraints, the prebuckling deflection shapes do not

follow what is normally called "beam bending" deflection.

That is, instead of the cylinder deflecting as pure body

motion with the corresponding convex shape, the cylinder

deforms as shown in Fig 20. This figure details only the

top half of the cylinder with the bottom half being a mirror

image. There isn't enough material in these short unstiff-

ened cylinders to allow the stress loading caused by the

applied end rotation, to dissipate through flexure type de-

flections. Another way of saying it is that the cylinder

isn't stiff enough to counteract the local end moments Mx

which cause a shear strain type deformation. By keeping

the end plane undistorted the material around -900 is put

under pure tension; whereas, the fibers around +900 are

subjected to pure compression. The resulting deformation

has the material on the tension side necking in, and the
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material on the compression side bulging out. The maximum

extent of the inward deformation or outward bulge is labeled

MWD (on Fig 20). Also on this figure, the V deflection at

the middle column is sketched. This line is seen to take

the shape normally associated with bending. This indicates

that the vertical plane through 00 and 1800 about which the

end rotation is applied does deflect in the "normal manner".

Figure 21 is a top view of the first few rows of the cylin-

der. It shows how the deformations vary around the circum-

ference increasing to a maximum at row 5 (4" down). At 00

and 1800 there is a very slight motion (not discernible in

this plot) towards the bottom of the page.

It should be mentioned at this point that the actual

deflections are of order 10- 3 inch with an L/R ratio of

1.047. So, this effect would not be discernible to the

naked eye.

Again looking at Fig 20, the inward/outward deflections

in the tension and compressive zones respectively do not get

back to the original circumference position. This changes

when the L/R is doubled to 2.09 where the form takes on the

shape designated in Figs 22 and 23. The length of cylinder

is doubled keeping the radius the same while the applied end

rotation angle is kept constant. The result is that the de-

formations now cross over the original circumferential

position and start to assume flexure deflection type displace-

ments at the mid section. This transfer region is called

the crossover point (CP) and is designated in Fig 22. As
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the length to radius ratio increases for the same applied

input rotation, the deformation effects diminished in magni-

tude as well as position along the length of the cylinder.

Figure 22 shows that as the L/R ratio approaches 20 the

effects disappear. In fact, for L/R ratios greater than

6 the effects can be said to be negligible. This is still

well below the L/R value of 50 where the Brazier effect

starts to take place. Figure 23 is a plot of the W deflec-

tion vs V deflection at the mid section as the L/R varies.

Since the V deflection of the middle column has been shown

to follow "beam type" flexure, the relation of the W de-

flection at the end columns to V gives a good indication

of the cylinders behavior. As is seen in Fig 23, the ratio

is almost unity at L/R equal to 20 and for all practical

purposes can be considered as such for L/R ratios greater

than 6.

A final comment about using the pure bending loading

method; all motion degrees of freedom are accounted for

with respect to free body motion through the symmetric

conditions on boundaries 2, 3, and 4 except for translation

in the -900/900 plane. Some restriction must be added in

the program to stop this from occuring. A restriction of

setting V equal to 0 at the middle column of row 1 was used.

This was chosen, rather than restricting V at the center,

since the end plane rotation is the applied loading method.

The V restriction at the center would lead to the same re-

sults but the ends would be deflected rather than the
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center. Also, the V restriction is preferable over a W re-

striction at the -900 or 900 columns since V restricts in-

plane motion; whereas, the W would restrict motion normal

to the surface which is much weaker.
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End Ring Stiffened Shells

Since the unstiffened cylinders were not able to re-

sist the deformations caused by the end plane bending ro-

tation, a study using discrete rings positioned near the

ends was undertaken. Figure 24 is a plot of the results

for the first 7 rows of the compression column at 900. It

is seen immediately that for the ring configurations cho-

sen, the basic deformation pattern does not change.

One ring added at the top row, whether inernal or ex-

ternal, has no effect. It acts like a point mass and does

not affect the axial bending stresses. Rings added at row 2

(1") or row 3 (2") do affect the initial slope and specific

shape of the deformation pattern but do not alter the over-

all characteristics. If the ring's size is doubled and

placed closer to the MWD (row 3), the maximum deflection is

delayed and somewhat reduced, but not appreciably. There-

fore, it is indicated that the cylinder wall is still the

primary resistance medium, and that the rings used are in-

effective for controlling initial deformations. A further

parameter study varying the ring's cross sectional area,

moment of inertia, and placement could better define the

rings effectiveness.
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Stringer Stiffened Shells - With and Without Cutouts

When internal stringers are added to the cylinder, the

initial deformation pattern changes. Figure 25 depicts a

cylinder with internal stringers positioned 3" on center,

studied using smeared theory. The cylinder/stiffness com-

bination is now able to resist the end moments caused by the

ber:ding rotation of the end plane. In effect, the smeared

stringers have made the shell wall thicker, more able to

act like a column. However, the shell is still too short

to allow for complete flexure analysis. There is not enough

distance between the end constraints. On the compression

side, the stiffened cylinders follow the compression zone

radial deflection as described by (21). The tension side

deforms with the same shape, not the mirror reverse as it

would be with total compression loading. The figure again

has a crossover point which should become negligible with

an increase in the L/R ratio. A study similar to Figs 22

and 23 was not completed, but it can be surmised that the

same effects would develop; probably faster since the shell

is stiffer. Model numbers 1, 3, 5 in Appendix C were used

in a L/R study from .698 to 1.361 to contrast results against

stiffened cylinders with cutouts.

Figures 26 and 27 depict cylinders with 1 asymmetrical

and 2 symmetrical cutouts respectively. As can be seen, the

cutouts affect the prebuckling deformation patterns. In

both types, the cutouts cause a commensurate loss in strength
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which lets the deformations above the cutout progress as if

there was little restraint. The initial deformations close

to the top row follow that of the stiffened shell without

cutouts, although the MWD value is 65% less, However, there

is no crossover point anymore. The cutout(s) at the center

of the cylinder lets the stresses redistribute to areas at

the sides of the cutout. The bending restraints, which

forces the crossover to satisfy compatability relations, has

been altered due to the missing section. Hence, the dotted

depiction of the deflection over the cutouts assumes almost

a linear relationship. Model numbers 16, 18, and 20 in Appen-

dix C, are used for axial compression analysis. The circum-

ferential extent is 90 degrees but symmetry allows the full

1800 to be modeled. However, this lets us only examine the

case of two cutouts under axial compression. For bending,

model numbers 17, 19 and 21 A & B, are used. Minor input

card changes in the subroutine wall allow us to consider

either one (B) or two cutouts (A) respectively.

The stiffened cylinders were loaded with the same

bending rotation angle as was used for the unstiffened

analyses. The stress intensity at the 900 column (maximum

compression column) of row 1 at buckling was contrasted

against the same value under axial compression. Figure 28

depicts the results. The general movement for the entire

graph is progressively higher with increasing L/R. This im-

plies that the buckling loads increase with length. How-

ever, my analysis runs were for limited changes of length
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of short cylinders. Nelson (21) plotted '-he same pro-

gressive movement for SS4 bundary conditions but went on

to show that for a greater L/R ratio equal to 1.78 the

graph drops down again to below the values for L/R = .698.

The pertinent mechanism at work is the interaction of the

SS4 boundary condition with the short shell. Nelson shows

that for other simple support (SSl, SS3) boundary re-

straints, the plot remains close to horizontal. As was

brought out earlier in the shell model section, we are re-

quired to use the SS4 boundary support for analysis, due

to STAGSC handling of displacement loaded buckling analy-

ses. Pure bending rotation is a form of displacement

loading. Therefore, this boundary condition will affect

the comparison between axial and rotation loading analyses.

For stiffened cylinders without cutouts, Fig 28 shows

that the bending critical values are above the axial com-

pression loaded values and tend to diverge slightly as the

L/R ratio increases. An explanation for this behavior,

involves crossover point analysis under prebuckling dis-

placement rotations. As was pointed out earlier, an inter-

nally stringer stiffened cylinder deforms in the shape of

Fig 25. When axial compression is compared with the shape

for the same L/R, the axial displacement pattern at 900

follows the same concave/convex arrangement. However, the

crossover point is closer to the top edge for the axially

compressed cylinder. The variation is probably due to the

effect of stringer eccentricity aiding the initial defor-
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formation under bending and resisting the return mechan-

ism. The difference in crossover points causes a commen-

surate change in the effective length (distance between

the cylinder top half and bottom half crossover points)

between the axial and bending loaded models. Since the

bending effective lengths are smaller in each case, their

buckling loads are slightly higher. This effective length

difference increases slightly with an L/R increase which

causes the divergence. These effects are associated with

short shells only; as soon as "beam type" flexure predom-

inates, the stress analysis models change. However, for

these cases the maximum difference was less than 13%.

Therefore bending buckling stresses can be modeled by

axial compression analysis to within that percentage tol-

erance for the given L/R ratios.

The picture changes when cutouts are introduced. Now

there is less material under both loading schemes and the

buckling intensities are lower for all L/R ratios compared

with no cutout cylinders. Further, the maximum bending loads

have less material to average over and consequently the cyl-

inder buckles earlier when compared against axial compression

analysis. Although the SS4 boundary condition is still

present, the cutout condition is now dominant. But, as the

shell length increases, the hole (size held constant) effect

diminishes in importance and the critical axial vs bending

intensity values converge between themselves and the no cut-

out values.
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Two other points can be made from Fig 28. First,

there is negligible difference between the one cutout and

two cutout models under bending loading. The critical N
x

values are within .1% of each and therefore plotted to-

gether. This effect is also clearly demonstrated on Fig

32 where the one cutout and two cutout stress intensity

flow lines lie right beside each other. The reason for

the unimportance of the other cutout is that it lies in

the tension zone, which does not contribute to the maximum

compression fiber analysis. Second, a "finer"mesh (15 x

121) is plotted on the figure for axial compression analy-

sis of a stiffened cylinder without cutouts. For unstiff-

ened cylinders, increasing the mesh from 15 x 61 to 15 by

121 resulted in a buckling load increase of 19%. For

stiffened cylinders, this same mesh refinement only brings

out an increase of 5.8%. This indicates that for stiffened

analysis a moderate spacing models the cylinder very well.

This was the justification for using the 15 x 61 mesh

arrangement as the primary strategy.

Figure 29 depicts the critical bending moment values

for the different cutout and no cutout cylinder models as

the length is changed. The algorithm used to calculate

the moment is given in Appendix B. Since the cylinder is

loaded by specifying a rotation angle, the applied moment

is found as a by product from the resulting Nxvalues. The

SS4 boundary condition again causes the rise in the criti-

cal moment value as the L/R ratio increases for these
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short cylinders. What is interesting is the closeness of

the diffierent critical moment values for the shell cylin-

der models in question for each L/R ratio. This indicates

that we are able to predict critical moment cutout values

using no cutout model analyses. The maximum difference

lies within 9% for the L/R range studied. There is some

difference between the one cutout and two cutout values

which arises from using the top row Nx values for the total

model to calculate the total moment. However, this differ-

ence is always less than 9%.

Plots of the eigenvectors for the no cutout and sym-

metrical cutout stiffened cylinder models are given in

figures 30 and 31 respectively. These figures are included

to show that the circumferential buckling mode shape under

end rotation loading doesn't change with the addition of a

cutout. The axial compression loading mode shapes change

but only in the relative magnitude of displacements. For

all cases, the wave lengths are the same, giving approxi-

mately 12 half sine waves per 1800 compression. The axial

wave form for both the cutout and non cutout stiffened

models is one sine wave, with the maximum normalized de-

flection occuring at the center of the shell. This is

contrasted with unstiffened cylinders which have many half

sine waves in the axial direction.

An attempt was made to correlate the cutout model

loading under axial compression to that under pure end

bending by means of a ratio depicted in Fig 33. The
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approach was motivated by the convergence of the bending

vs axial values in Fig 28 and the equal number of sine

waves over the cutout for the different loading schemes.

Figure 31. It was felt that the total load above the cut-

out could be used as a predictive technique. The total

load above the cutout for both loading schemes was arrived

at by: 1. Multiplying each top row prebuckling Nx value

above the cutout by the distance it works over. 2. Multi-

plying each of the above values by the eigenvalue at buck-

ling. 3. Summing the values. These total loads viere then

used in the ratio in Fig 33 and graphed. The result was a

plot that decreased as the length increased which was ex-

pected due to the convergence of Fig 28 points. Expected

values for bending buckling loads above a cutout can be ob-

tained using these ratio values, especially for L/R > 1.
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V. Conclusions

From the analysis undertaken in this study, the follow-

ing conclusions can be made.

(1) The Skogh-Brogan routine for applying pure bending

rotations to a cylinder using end boundary kinematic

constraints does keep the edge circular and planer

under loading.

(2) When the pure bending loads are applied to short un-

stiffened cylinders (L/R < 10) the structure assumes

deformation patterns different from longcylinder

bending deflections. The material on the tension

zone (-900) deforms inwards; whereas, the material

on the compression zone (+900) bulges outwards.

These radial displacements are of equal magnitude

but opposite in sign. The effect diminishes cir-

cumferentially to zero at the 0 and 180 point:s.

The longitudinal extent of this deformation pattern

changes both by degree and direction with cylinder

length.

(3) The inplane V deflections at the middle columns (00

and 1800) follow a "beam type" deflection path

reaching a maximum at the center mid plane of the

cylinder.

(4) As the cylinder length increases the effects dimin-

ish until an L/R = 20 where there is no discernible

deformation for the mesh spacing used. The de-
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flections at this length follow "beam type"

flexure.

(5) Discrete ring stiffening at the ends of the cylin-

der did not appreciably alter the overall charac-

teristics of the deformations; at least for the

chosen stringer dimensions and positioning from the

loaded edge.

(6) When stringers were added, the deformation pattern

was altered. The cylinder/stringer combination is

stiff enough at the boundary to follow beam flexure

behavior. However, with shorter lengths L/R < 10

there isn't enough material between the edges to

allow for this flexure. Therefore, the cylinder's

radial displacements follow a reversal of direction

near the center mid section. However, the inplane

V deflections at the middle column continues to

follow the typical flexure pattern.

(7) When cutouts are added to the stiffened cylinder un-

der bending loading at the maximum compression and

tension zones, the deformation pattern initially

follows that for no cutout stiffened cylinders. As

the cutout is approached, the cylinder loses its

rigidity and the deformations become almost linear.

(8) For buckling analysis, the tension zone has very

little effect on the critical stresses of the maximum

compression zone fibers. Adding a cutout in the

tension zone does not alter the failure values.
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(9) The buckling stress intensity values for stiff-

ened cylinders without cutouts under axial vs

bending loading lie within 13% of each other for

the L/R range of .698 to 1.361. Axial analysis

can be used therefore to predict moment load fail-

ures to at least this percentage accuracy.

(10) Bending vs axial analysis for stiffened cylinders

with cutouts is less precise. The trend shows a

convergence of critical values to within 9% as the

length increases to L/R = 1.361. For L/R values > 1,

a load ratio graph along with axial data can be

used to model bending loads above the cutout.
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Appendix A

Force and Moment Intensities, Constitutive

Equations, and Kinematic Relations

The internal forces and moments for a shell are

usually expressed in terms of forces and moments per unit

distance along the edge of the shell element. These force

and moment intensities, pictured on Fig 1, are related to

the stresses as shown on the next page. The symbols ax and

xe denote stress components at any point through the shell

wall thickness.

The following page contains the kinematic middle-

surface relations postulated by Donnell and the constitutive

equations for thin-walled isotropic elastic cylinders. The

form of these equations is taken from (14).
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Force and Moment Intensities

/2 -t/2
Nx = x(l + R)dz Ne Sedz

-t/2 R- t/2

t2 t/2

1 RNQx J=  (l + 2 )dz NQ8 =  z
t/ t/2

t/2 t/2

x  z (1 + ) dz =d

t/ t/2
ft2R Me j Czdz

-t/2

t/2t/

Mx8 = R ax (I + ) zdz MOx t zdz

-t/2
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middle-Surface Kinematic Relations

E U, + 82 Bx wx K ,

,+ wto2 -we K -

6 R R

y evex + S0KXO j( Re + ox)

Constitutive Ecuations

NX = C(C x + ye0) Mx = D(IKX + VKe)

No = C(e + ye 8 ) me = D(KZ0 + VIKX)

-v
N xC 2 YeMe= D(l V)K 0
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Appendix B

STAGSC PROGRAM LISTINGS

The following listings show the different aspects

of the STAGSC computer codc I used. They do not come from

the same program.

B1 is a listing of the input data cards needed to run

a program. This run was for a cylinder of total length

40 inches with a mesh arrangement of 16 by 71 over the

quarter shell segment model. It has options included

for bifurcation analysis of a dummy branch moment loaded

cylinder with a wall subroutine defined surface with 12

inch cutouts.

B2 details the user written subroutine UCONST for a

cylinder segment having 61 columns.

B3 shows the user written subroutine WALL with no

cutouts.

B4 shows the user written subroutine WALL with two

cutouts.

B5 details the subprogram MOMENT which calculates

the total applied moment from the Nx values along the

top row of the cylinder.

89



INPUT DATA CARDS

V4 V4 Nj W4 N 4 94 V.54 cu "V 'P to V4 V4 cu5 V4 "i) V49V4 V4 N.V4W4 94 N 949V4 N% cu
w t cswjLL a- )'0.4 -,j nW nn, k-sarz c & -. 4 -4) % ~ J f i ~ -j- na L

99.

at

V94*

*& 4
.3

a CO
in i

co .1:

* oV 0 '.2

ca 00 0

ty a aa

In4 .3a 4

A * 2ItV
31..~1 a .a 0 by A l 0 W 4c

CD 00 ut

61 o 0N 0 a I

A4 N4 W4:V4 I

e~i I. 90



UCONST

SU18ROUTINE UCONST
PURE N~ENT - EDGE STAYS CIRCULARt AND Ih ONE PLANE
INPUT IS U DISPLACEME~NT AT ROWI/GOL1 ON DUMMIY BR'AN'C4 2

DATA T4it-9D., -8?., -ei.., -81.. -76., -7Lrev -12., -69., -6500
C -63., -6099 -E7*t w154op -5L9, *'%5., -4o -42*t -33ot -36,
C -33., -30.., -27., -21#., -21.. -lber -Fg -129p -9*9 -b., -3.,
C Oeu, 3., 6., 9., 12s, 15., 18., 21., 2I4., 27., 3)., 33*9
0 36,, 3S., 42., 459 48.0 Slot !:4*p 57.,p b0., 63., b5*9 bias
C 72.,0 75., 78., 81., 84., 8?., 9D,/
E a 1a). E +b
IX~l) xI
IX(3) =1
00 10 [z1,6l
TH = r'IA(I)*3*1,15925bI18Q9
IX(2) aI
IBRNCH(LJ = 1
IORNCH(2) c I
ZBRNCH(3) x 1

THIS SECTION PREVENTS SIAGULA-I1IES
IF(I*E)*31) GO TO 5
1F(IoE291) GO TO 2
IFCIoE2951) GO rO 2

EQUATION ±
Iy (1) z I
IDW1 c 2
CC(l) s -SIN(TH) *E
IY(2) z I
10(Z) 33

CC(2) aCOS(TH) 4 E
CALL :O'1STR f2,IBRNCHIXIYgIDvC0)

2 CONrINJE

B2
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UCONST cont. ,

EQUATION 2

XYMl 3

Ceti) r
IY(2) 2
IOU2) Z
CCCZ) z-COS(TH4E

100) 3
CCM3 .SIN(TI4) E
CALL "0,0STR C3,IB3RNCHlX9IYipWCC)

EQUATION 3
IYCI a 31
10(1) =1.
COMI z E
IBRNCH(2 a 2
Ix(2) x 1
IY(2) Z I
10(2) c
CC(21 2 SIN(TH)*E
IYM3a I
10(s) L
CCM3 -E
CALL 304STR (3,I9RNCKIXIYlIIOc3)

5 GONTINJE
10 CONTINUE

RETURN
ENO
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WALL -NO CUTOUTS

SUBROMrINE WALL (1BRNCHPX 9YOZ sICF39 ISTFF 91PRN,;ZHOA9 C'oo)
CONON/LAYDI/ TL(20),LX3(20),EY3(2D),U21(z)G3(2)ZEr3ZI),

IR'403C23) ,LfYSLSTRS
C~uiMON/S?EAR/NSTIITYP(5),IDIR(5),SPACE (5) ANGE(b)

c
IF C!8~tNCHeNE.1) RETUN
LAYS j
lCFB 3
1PRW 0

C PANEL DAT4
TLMI z Del
EX3(l) 2104.00000o
EY3(j) z u40Oi4OL.
U21(i) x*33
G3(1 a 3750000.

*ZET3(1) 0&0
RHD3(1) De

C SM1EARED D3ATA
ISTFF x
NSTI z
ITYP(1) 1
IDIR(I I
SPACEI. 3.0
RETURN
END0

B3
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WALL -TWO CUTOUTS

SUBROUTINE WALL(IBRNCHXYZICF3,ISTFFtIPRWR-4OAPC'^)
CONP4OV.AYD1I TL(20),EX3(20),EY3(2i3),U21C20),G3(20),ZET3(29

1RMO3(20) ,LAYSLSTRS
COMMON/StEAR/NSTIITYPO 9OR()SPACE () tANGE(S)
IF (I91VICH9NEo1) RETUFRN
LAYS z I
ICF6 3
PRW z )

CUTOUT L3CATION TESTS FOR 128Y12 INCH CJT

BOTTOM LE--TI IF (X oSTs l4.0O) *AND* Y *LT* -8**0.) GO TO 13
BOTT014 RIGHT

IF (X *;To 14.00 *AND* Y *GT* 649*)Cr) GO O 10 ±
PANEL DAT4

TLMI m 0.1
EX3(l) = 0400G00o

EY ) 104E6OOGCo
U21MI 2.33
GM(I) 23750c6000
ZET3(1) = 0.0
RMO3(1) a 0.1

SH4EARED )ATA
ISTFF 1
NSTI I S
ITYP(l) xI
IDIR(IM I
SPACE(IM 3.0
GO TO 30

10 CONTINJE
CUTOUT DATA
ISTFF z0
TLM = 0.1
EX3(I) r 0.0
EY3() = 0.0
t821(1) 2 Ge

r G3(1) x 0.0
ZET3(2) =0.0

3RHO3(I x 0.0
30CONTINUEl
RETURN
END

B4
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MOMENT

PROGRAM MOMENT (I NPUT, OUI PUT TAPE3= INPUT ,TAPE4=0 UTPur)
2 READ (391) A
I FORMAT (2.vXA2)

IF (A.!4E92MNX) GO TO 2
SMOMENr 0.0
00 10 I = 1,91
READ (3,3) AX
WRITE (493) AX

3 FORMAT (8X9F8s4,..XEl2.6)

IF £I .EQ. I ) GO TO 2L
IF CI *GT. ± *AND* I *LT. 31) GO TO 30
IF CI 9EQo 31 )GO TJ 4Et
IF (I sEQo 91 ) GO0 T 0 0
S a X 0 1.S * SINCAA)
GO TO i2

20 S = X 194 SIN(AA)
GO 10 53

33 S aX 03.o0 SIN(AA)
GO TO so

LeO S a X 012.25' SIt4(AA)
so TO 5D

50 S 2 X .75 # SIN(AA)
60 SMOMENT =SHMENT + S
10 CONTINJE

XX = 2*3 S 7.2958 *SftOMEt4T
WRITE (4t4) XX

4. FORMAT (E1296)
ST OP
ENO0

B5
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APPENDIX C

FINITE DIFFERENCE MESH ARRANGEMENTS

The different mesh arrangements are by model number.

Models I to 15 and 2A pertain to unstiffened and stiffened shells

without cutouts. Models 16 to 21A, B are used for the cutout

analyses only.

Model 3, the 15 by 61 mesh arrangement is the basic model

around which the other non cutout models are compared. It gives

a 3" by 3" square grid spacing for most of the cylinder segment

with a 1" by 3" ratio for the top few rows. For the :iffened

analyses, it gives results with a circumferential buckle wave

pattern of 4 nodes per half sine wave, without having a grid line

between each stiffener (economical). For unstiffened analysis it

gives consistent although conservative buckling load results,

approximately 78% of the classical value. Since the unstiffened

analyses were mainly shape studies, these results are close

enough. Models 8 to 15 were used for moment end deflection analysis

only and not used for bifurcation studies.

Cutout models 16, 18, 20 are 1/8 shell Nelson models used for

stiffened axial compression analysis. Models 17, 19 and 21 are

used for the bending studies. The A and B suffixes refer to two cuts

and one cut respectively. The dashed cutout is the one not there

for one cut analysis.
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16 by 61

; 180"I
5 atj 1i 60 at 3" ---.

10 a 1 L 976 nodes

Ix L = 40"1

MODEL 1

15 by 31

6"' i -1801"

6 at 30 at 6"

24"1
8 at 3"

465 nodes

lx L = 60
MODEL 2

15 by 61

6"-1 180"1
6 at 1"I60 at 3"

24"1

8 at 3",

lx 915 nodes
Ix L = 60"1

MODEL 3
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15 by 121

180"
6"at 1" 120 at 1.5" ,

T- 
y

24"
8 at 3"

1815 nodes

L = 60"
Ix

MODEL 4

18 by 61

180"
6"

6 at 1" 60 at 3"

qp y

33"
11 at 3"

1098 nodes

L = 78"

MODEL 5
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15 by 46

6",, 180"-

6 at 1" 15 at 6" 30 at 3"

y

24"
8 at 3"

690 nodes

L = 60"

MODEL 6

15 by 91

6" 180" ,__ _ _

6 at 1" 30 at 3" 60 at 1.5"

41
24"

8 at 3"

1365 nodes

Ix L = 60"

MODEL 7
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ADDITIONAL MODELS FOR SHELLS WITHOUT CUTOUTS

MODEL SHELL WIDTH Y DIRECTION MESH NODES

2A 90" 30 at 3" 465

Note: x direction mesh remains the same for shell

length of 60"

MODEL SHELL LENGTH X DIRECTION MESH NODES

8 120" 6 at 1" 496
9 at 6"

9 180" 5 at 1" 713
17 at 5"

10 240" 5 at 1" 899
23 at 5"

11 300" 6 at 1" 961
24 at 6"

12 360" 5 at 1" 961
25 at 7"

13 480" 6 at 1" 1023
26 at 9"

14 600" 3 at 1" 961
27 at 11"

15 1143" 3 at 1" 1829
15 at 6"
48 at 12"

Note: Y direction mesh remains the same 30 at 6".
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15 ,1 75",
5 atl" 1 atl.' 25 at 3"

15"

10atl.5"1

560 nodes

L= 40"

MODEL 16 16 by 36 (1 Cut)

5 , 1 5 1s . ..,o , 1 5, 5 1 . 5

5 at 1", ,Oatl.5' 50 at 3" 3Oat .5"j

80y

15"
lOatl. 5"

1104 nodes

x L = 40"

MODEL 17A 16 by 71 (2 cut)

5" F-.15" 1501 15"
5 at 1" IOatl.5' 50 at 3" Oatl-

I

y

15" 
;

10atl. 5"

1120 nodes

q L = 40'x
MODEL 17B 16 by 71 (1 Cut)
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611 15'1 75#1 __ _ _ _ _ _ _ _ _ _ _

6at 1" [Oatl.5 25 at 311

9",
3 at 3'1

I Oat 1 5"

704 nodes

Ix L = 60"

MODEL 18 20 by 36 (1 Cut)

6, 151 150",
6 at

IlOatl.5 50 at 3" 0atl.

9"
3 at 3"

1388 nodes 1404 nodes

L = 60" L 60"
x

MODEL 19A (2 Cut) MODEL 19B (1 Cut)

1
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6 at "75
atl.5 25 at 3"

~I~z

18
6 at 3"

15"
1Oat1. 5"

812 nodes

L = 78"

MODEL 20 23 by 36 (1 Cut)

6"0-1 1550"
6 at 1" atl. 50 at 3"

10.

18"
6 at 3"

15"•
10atl.5"

1601 nodes 1617 nodes

x L = 78" L = 78"

MODEL 21A (2 Cut) MODEL 21B (1 Cut)
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